
Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

CSE 390B, Autumn 2022
Building Academic Success Through Bottom-Up Computing

Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Final Project Overview
& Operating Systems

Final Project Overview, The Software Stack, Overview of
Operating Systems, Project 8 Overview

Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Lecture Outline

❖ Final Project Overview
▪ E-Portfolio Details and Topics Brainstorming

❖ The Software Stack
▪ Roadmap of Hardware and Software Components

❖ Overview of Operating Systems
▪ Abstraction, Protection, Processes, Virtual Memory

❖ Project 8 Overview
▪ Micro Jack Details, Tips for Getting Started

2

Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Final Project E-Portfolio Overview

❖ You will create an E-Portfolio that is geared toward a new
Allen School student

❖ Your E-Portfolio is a culminating project in having you
reflect on the metacognitive skills you’ve learned and
providing advice for entering the program

❖ During our final class, you will give a 6–8-minute
presentation on your E-Portfolio

3

Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Final Project Due Dates

❖ Part I: E-Portfolio Outline
▪ Due next Thursday (12/8) at 11:59pm

❖ Part II: Final E-Portfolio
▪ Due Tuesday of finals week (12/13) at 4:00pm

❖ Part III: E-Portfolio Presentations
▪ During the scheduled CSE 390B final
▪ CSE 390B Final Time: Tuesday, 12/13 from 4:30-6:30pm
▪ CSE 390B Final Location: CSE2 G04 (same as usual classroom)

4

Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Reflection on Metacognitive Skills

Individually first, take some time to reflect on the following
questions, and then discuss in groups:

❖ Which two metacognitive topics would you consider
including in your E-Portfolio and why?
▪ Reflect on which ones you’ve grown the most in, have impacted

you the most, were most challenging to grow in, etc.

❖ What are some examples of yourself demonstrating those
two metacognitive skills?
▪ Please be specific here! Aim to share these skills as if you are

telling a story and showing concrete applications of these skills
5

Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Reflection on a Technical Skill

Individually first, take some time to reflect on the following
questions, and then discuss in groups:

❖ What technical topic from CSE 390B would you consider
including in your E-Portfolio and why?
▪ Reflect on technical skills that helped connect the dots, were most

interesting to you, most challenging for you to grasp, etc.

❖ What is the impact of having knowledge of that technical
skill? In other words, why is that technical skill useful?
▪ Please be specific here as well — think about how this technical

skill would be useful in an academic or personal setting
6

Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Lecture Outline

❖ Final Project Overview
▪ E-Portfolio Details and Topics Brainstorming

❖ The Software Stack
▪ Roadmap of Hardware and Software Components

❖ Overview of Operating Systems
▪ Abstraction, Protection, Processes, Virtual Memory

❖ Project 8 Overview
▪ Micro Jack Details, Tips for Getting Started

7

Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Roadmap

8

High-Level
Language

Intermediate
Language(s)

Assembly
Language

Machine Code

Operating
System

Computer

CPUMemory

ALU

Basic Logic Gates

NAND

SOFTWARE

HARDWARE

PC

Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Roadmap

9

High-Level
Language

Intermediate
Language(s)

Assembly
Language

Machine Code

Operating
System

Computer

CPUMemory

ALU

Basic Logic Gates

NAND

SOFTWARE

HARDWARE

PC

Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Roadmap

10

High-Level
Language

Intermediate
Language(s)

Assembly
Language

Machine Code

Operating
System

Computer

CPUMemory

ALU

Basic Logic Gates

NAND

SOFTWARE

HARDWARE

PC

Assembler

Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Roadmap

11

High-Level
Language

Intermediate
Language(s)

Assembly
Language

Machine Code

Operating
System

Computer

CPUMemory

ALU

Basic Logic Gates

NAND

SOFTWARE

HARDWARE

PC

Assembler

Focus for the rest of
the course

Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Roadmap

12

High-Level
Language

Intermediate
Language(s)

Assembly
Language

Machine Code

Operating
System

Computer

CPUMemory

ALU

Basic Logic Gates

NAND

SOFTWARE

HARDWARE

PC

Assembler

Focus for the rest of
the course

Focus for today

Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Software
Overview

x86, x86-64
ARM

RISC-V
HACK

Assembly
Language

Machine Code

Windows
macOS

Unix/Linux
Android
Hack OS

Operating
System

SOFTWARE
Assembler

Java Byte Code
Jack VM Code

Java
Python

C/C++
Jack

High-Level
Language

Intermediate
Language(s)

Compiler

Compiler

(VM Translator)

Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Lecture Outline

❖ Final Project Overview
▪ E-Portfolio Details and Topics Brainstorming

❖ The Software Stack
▪ Roadmap of Hardware and Software Components

❖ Overview of Operating Systems
▪ Abstraction, Protection, Processes, Virtual Memory

❖ Project 8 Overview
▪ Micro Jack Details, Tips for Getting Started

14

Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

The Operating System

❖ The operating system (OS) is just another piece of software
▪ A massive, complex piece of software
▪ In the end, uses the same machine language your code does

❖ OS is more trusted than the rest of the software that runs
on your computer

❖ User programs and applications invoke (ask) the OS to
perform operations they are not trusted or allowed to
▪ Means the OS needs to be secure

15

Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Why an Operating System?

❖ Directly interacts with the hardware

❖ Benefit: Abstraction
▪ Provides high-level functionality for messy hardware devices
▪ OS must be ported to new hardware, but user-level programs can

then be portable

❖ Benefit: Protection
▪ OS is trusted to touch hardware; user-level programs are not
▪ Prevents user-level programs from causing errors in the hardware
▪ Maintains security between programs and user accounts

16

Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Operating Systems: Abstraction

❖ Many abstractions provided by real-world operating
systems

❖ File System
▪ File contents = just bits in the “giant array” that is the hard drive

(“permanent” storage, as opposed to temporary storage in RAM
that disappears when computer is turned off)

▪ OS keeps a record of which ones fall into which “files”

17

Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Operating Systems: Abstraction

❖ Many abstractions provided by real-world operating
systems

❖ Network Stack
▪ Communicating with network devices ≈ communicating with

screen/keyboard memory map
▪ OS handles messy, time-sensitive protocols

❖ Processes
▪ Only one process can run at once on a CPU
▪ Operating systems can manage resource sharing
▪ OS switches very quickly, illusion of running both “at once”

18

Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Operating Systems: Protection

❖ The CPU has different “privilege” levels when it is
executing (controlled by a register on the CPU)

❖ OS code and memory can only be executed by an OS
privilege level
▪ Your applications run at a lower level and cannot access OS code

and memory

❖ This prevents applications from crashing entire system
▪ For example, if your web browser crashes, usually it doesn’t crash

your entire computer
▪ Also helpful for security purposes

19

Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Operating Systems: Protection

❖ Example: Suppose we want only the OS to be allowed to
run instruction SET_ON_FIRE
▪ But if the OS is just a machine code program like any other…

what’s the security hole?

20

Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Operating Systems: Protection

❖ Example: Suppose we want only the OS to be allowed to
run instruction SET_ON_FIRE
▪ But if the OS is just a machine code program like any other…

what’s the security hole?

21

(USERPROG1)
@R1
D=D+1
M=D
SET_ON_FIRE
M=D+1
D=0
...
@OSRETURN1
0;JMP

@R0
D=M // Ask user what
@i // program to

run
A=M+1
M=-D
@USERPROG1
D;JEQ
...

(OSRETURN1)
@R3
M=D+1

Operating System CodeYour Code

Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Operating Systems: Protection

❖ The fix: hardware bit for “privileged mode”
▪ Processor checks before running SET_ON_FIRE
▪ OS disables before jumping to user code, re-enables on return

• (Processor also must check that user code can’t enable privilege)

22

(USERPROG1)
@R1
D=D+1
M=D
SET_ON_FIRE
M=D+1
D=0
...
@OSRETURN1
0;JMP

@R0
SET_ON_FIRE
D=M // Ask user what
@i // program to run
A=M+1
DISABLE_PRIVILEGE
@USERPROG1
D;JEQ
...

(OSRETURN1)
ENABLE_PRIVILEGE
@R3
M=D+1

Operating System CodeYour Code

1

HW Privilege Bit

Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Operating System: Processes

❖ A “process” is an application running on your computer
▪ E.g., your web browser, terminal, Microsoft Word, etc.

❖ Each app instance contained in one or more processes
▪ The OS manages these processes

❖ Multiple processes are “running” at the same time, but
it’s just the OS quickly switching between them

❖ A process only has access to its memory, and cannot
access the memory of other processes
▪ This is helpful because if one process crashes or is malicious, it

makes it more difficult to crash or corrupt other processes too
23

Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Why Not an Operating System?

❖ The Hack computer we’ve built is… small
▪ Uses the same principles as your laptop CPU
▪ But in terms of scale, closer to a microprocessor or small

embedded chip

❖ For embedded systems, often an OS is overkill—instead,
designed to be programmed with/run a single program at
a time
▪ Pro: developer gets complete control over the device
▪ Con: re-implement OS features, no protection

24

Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Virtual Memory

❖ Most OS’s allow multiple
processes, but shouldn’t be
able to modify values in
another’s address space

❖ OS provides illusion of
separate address spaces via
virtual memory
▪ Really all one physical memory
▪ OS & hardware map pieces of

virtual memory to pieces of
physical memory

25

virtual registers,
variables

stack

heap

screen memory
map

keyboard
memory map

virtual registers,
variables

stack

heap

screen memory
map

keyboard
memory map

Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Virtual Memory

❖ Benefit of security:
Programs only know about
their own address space
▪ Don’t even have a way to

describe address of other
application’s data

❖ Drawback is efficiency
▪ Virtual address translation is

fast nowadays, but still slower
than directly accessing memory

26

virtual registers,
variables

stack

heap

screen memory
map

keyboard
memory map

virtual registers,
variables

stack

heap

screen memory
map

keyboard
memory map

Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Comparison of Operating Systems

27

❖ Three different ways to do essentially the same thing
▪ Everyone has their own preference

❖ Each has their own benefits and tradeoffs
▪ Work on varying types of hardware, provide different levels of

customization, different features, work better with different
software, open source vs. proprietary, etc.

❖ You could choose to do some research next time you are
deciding on a laptop, computer, or OS

Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Lecture Outline

❖ Final Project Overview
▪ E-Portfolio Details and Topics Brainstorming

❖ The Software Stack
▪ Roadmap of Hardware and Software Components

❖ Overview of Operating Systems
▪ Abstraction, Protection, Processes, Virtual Memory

❖ Project 8 Overview
▪ Micro Jack Details, Tips for Getting Started

28

Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Project 8 Overview

❖ You will be given starter code for a compiler that reads a
micro version of Jack and spits out Hack

❖ The Scanner & Parser are working
▪ Task A: read through comments to understand what’s going on

❖ The Code Generation is buggy and half-finished
▪ Task B: find the bugs by practicing deliberate debugging strategies

(e.g., step through generated Hack code using CPUEmulator)
▪ Task C: Complete the implementation of the compiler

29

Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Project 8: Micro Jack

❖ Stripped-down version of Jack
language
▪ More manageable but enough

features to be interesting

❖ Available features:
▪ Types: int and int[], var
▪ Structures: if, while, +, -, ==, !=

❖ Missing features:
▪ Functions, function calls, classes,

objects, strings, for loops, array
bounds checking, etc.

30

var int a, b[1], c;
var int d[10], e;

let a = 1;
let b[0] = 1;
let n = 9;
while (n != 0) {

let d[n] = a;
let n = n - 1;

}
let screen[100] = d[0];

Basic.jack

Any number of
variable declarations

Then any number
of statements

Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Project 8: The AST Nodes

❖ You are provided with all AST Node classes needed
▪ All your code will be implemented within these classes

31

ASTNode

JackProgram VarDeclaration Statement Expression Identifier

ArrayVarDeclaration

IntVarDeclaration

Assignment

While

If

VarAccess

ArrayVarAccess

IntVarAccess

Plus

Minus

Equals

NotEquals

NumberLiteral

Abstract Class

Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Project 8: Generating Code

❖ Each AST node has a printASM
method that should print out
Hack instructions to System.out
(and recursively call printASM
on children)
▪ You’re provided with
instr(“@R0”) and
label(“LOOP”) convenience
functions

▪ Each can take a comment as a
second argument — highly
recommended!

32

public class If extends Statement {
public Expression condition;
public List<Statement> statements;

@Override
public void printASM(symbolTable) {

condition.printASM(symbolTable);
instr("@R0”, ”Get cond result");
instr("D=M");

...
}

}

Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Project 8 Overview

33

❖ Step 1: Read comments provided in the starter code
❖ Step 2: Implement NumberLiteral.java (~4 lines)
❖ Step 3: Debug Plus.java (2 bugs)
❖ Step 4: Implement Minus.java (~13 lines, similar to
Plus.java)

❖ Step 5: Implement NotEquals.java (~21 lines, similar
to Equals.java)

❖ Step 6: Implement ArrayVarAccess.java (~3 lines)
❖ Step 7: Debug If.java (2 bugs)
❖ Step 8: Implement While.java (~14 lines)

Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Example: Number Literal (Step 1)

❖ Called a “literal” because it’s a literal value embedded in
the Micro Jack code
▪ Generated Hack Assembly should simply put that value in R0

34

Abstract Syntax Tree

4
MicroJack Code

NUM(4)

@4
D=A
@R0
M=D

Hack ASM

Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Example: Number Literal (Step 1)

35

public class NumberLiteral extends Expression {
public int value;

public NumberLiteral(String value) {
this.value = Integer.parseInt(value);

}

@Override
public void printASM() {

comment("Start Number Literal");
instr();
instr("D=A");
instr("@R0");
instr("M=D");
comment("End Number Literal");

}

@Override
public String toString() {

return Integer.toString(value);
}

}

// Start Number Literal
@4
D=A
@R0
M=D
// End Number Literal

?

4

Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Example: Number Literal (Step 1)

36

public class NumberLiteral extends Expression {
public int value;

public NumberLiteral(String value) {
this.value = Integer.parseInt(value);

}

@Override
public void printASM() {

comment("Start Number Literal");
instr("@" + toString());
instr("D=A");
instr("@R0");
instr("M=D");
comment("End Number Literal");

}

@Override
public String toString() {

return Integer.toString(value);
}

}

// Start Number Literal
@4
D=A
@R0
M=D
// End Number Literal

4

Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Example: Number Literal (Step 1)

3737

Compile Time

● Java (the compiler) is running

● 4 is stored as value field inside an
NumberLiteral ASTNode

● When executed, prints code that
stores it another way!

Run Time

● Hack ASM (the output) is running

● 4 is stored as constant inside an
assembly instruction

● When executed, loads 4 from
instruction into A register

public class NumberLiteral extends Expression {
public int value;

public NumberLiteral(String value) {
this.value = Integer.parseInt(value);

}

@Override
public void printASM() {

comment("Start Number Literal");
instr("@" + toString());
instr("D=A");
instr("@R0");
instr("M=D");
comment("End Number Literal");

}

@Override
public String toString() {

return Integer.toString(value);
}

}

// Start Number Literal
@4
D=A
@R0
M=D
// End Number Literal

Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Example: Plus (Step 2)

38

public class Plus extends Expression {
public Expression left;
public Expression right;

@Override
public void printASM() {

comment("Start Plus");

left.printASM();

instr("@R0");
instr("D=M");

right.printASM();

push();

instr("@R1");
instr("A=M");

instr("D=D+A", "perform the addition");

...

Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Example: Plus (Step 2)

39

public class Plus extends Expression {
public Expression left;
public Expression right;

@Override
public void printASM() {

comment("Start Plus");

left.printASM();

instr("@R0");
instr("D=M");

right.printASM();

push();

instr("@R1");
instr("A=M");

instr("D=D+A", "perform the addition");

...

N
U

M
(2

)
N

U
M

(3
)

PLU
S

2 → R0

push R0

3 → R0

pop, add R0
result → R0

1 Structural Bug: Map to abstract diagram
for Plus:

1 Detail Bug: Step through generated code,
Check state at each step

Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Micro Jack Technical Details

❖ Can’t write a negative integer literal
▪ Instead, use subtraction from zero: 0 - 1

❖ All variable declarations must come before all regular
statements
▪ Why? Simplifies concept of a “defined” variable

❖ No defined operator precedence
▪ If order matters for an operation, use parentheses

40

Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Micro Jack Technical Details

❖ Arrays are just as you would expect
▪ arr[index] just calculating an address: take address of arr

variable and add index to it as an offset
▪ No array bounds checking — you can run off the end of an array

❖ Booleans are just 0 (false) and non-zero (true)

41

Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Project 8: Debugging Tips

❖ Try walking through the general printASM code to
understand why each line is there
▪ Add comments to the assembly as you go! Much easier to

understand resulting file

❖ Find the smallest example you can
▪ Provided tests get progressively more complex, but you may want

to write your own tiny test case to isolate
▪ printASM methods can get long fast—we’ve added comments

so you can isolate to the section you’re working on

❖ “Play Computer”: as you step through the code, write
down the state you expect after each instruction, then
advance and see if the CPUEmulator agrees

42

Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Additional Project 8 Tips

❖ When debugging assembly, a good first step is to try
understanding the code and adding comments to the
assembly as you go
▪ Much easier to understand resulting file

❖ A printDebug method has been implemented for you
on all AST nodes
▪ Use it to visualize exactly what the parser is giving you, but also as

a basis for printASM
▪ Both need to do processing on the current node and strategically

recurse on its children

43

Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Additional Project 8 Tips

❖ Pushing and popping from the stack can be intimidating,
but formulaic
▪ Understand it once, copy and paste afterward
▪ push() and pop() are already implemented for you

❖ We provide only a few Micro Jack test files
▪ We encourage you to write more of your own (think back to the

debugging lecture)
▪ Can use Sandbox.* to write more tests or create your own files

44

Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Project 8 Tools Practice

❖ Practice using the Project 8 tools — try the following:
▪ Run git pull to pull the Project 8 starter code
▪ Navigate to the src directory: cd src
▪ Compile the Java source code of the compiler by running:
javac $(find . -name "*.java")

▪ Use your compiler to compile the Jack file for the
OnlyVars.jack program: java compiler/Compiler
compile ../test/OnlyVars.jack

▪ Load and run OnlyVars.tst in the CPUEmulator

❖ The above steps were taken from the “How to Run Tests”
portion of the specification
▪ Can refer to this when needed as you work through the project

45

Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Post-Lecture 17 Reminders

❖ This Thursday’s Lecture: Final Project E-Portfolio
Workshop & Computer Networks

❖ Project Reminders
▪ Project 7, Part II (Professor Meeting Report) due this Thursday

(12/1) at 11:59pm
▪ Project 8 (Debugging & Implementing a Compiler) due next

Tuesday (12/6) at 11:59pm
▪ Final Project, Part I (E-Portfolio Outline) due next Thursday (12/8)

at 11:59pm

❖ Check Canvas for late updated late days through Project 6
46

