W UNIVERSITY of WASHINGTON Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

CSE 390B, Autumn 2022
Building Academic Success Through Bottom-Up Computing

Final Project Overview
& Operating Systems

Final Project Overview, The Software Stack, Overview of

Operating Systems, Project 8 Overview

YA/ UNIVERSITY of WASHINGTON

YA/ UNIVERSITY of WASHINGTON Lecture 17: Final Project Overview & Operating Systems

Lecture Outline

% Final Project Overview
= E-Portfolio Details and Topics Brainstorming

< The Software Stack
= Roadmap of Hardware and Software Components

<% Overview of Operating Systems
= Abstraction, Protection, Processes, Virtual Memory

< Project 8 Overview
= Micro Jack Details, Tips for Getting Started

CSE 390B, Autumn 2022

W UNIVERSITY of WASHINGTON Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Final Project E-Portfolio Overview

<+ You will create an E-Portfolio that is geared toward a new
Allen School student

< Your E-Portfolio is a culminating project in having you
reflect on the metacognitive skills you've learned and
providing advice for entering the program

< During our final class, you will give a 6—8-minute
presentation on your E-Portfolio

W UNIVERSITY of WASHINGTON Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Final Project Due Dates

< Part |: E-Portfolio Outline
= Due next Thursday (12/8) at 11:59pm

< Part Il: Final E-Portfolio
= Due Tuesday of finals week (12/13) at 4:00pm

< Part lll: E-Portfolio Presentations
= During the scheduled CSE 3908B final
= CSE 3908B Final Time: Tuesday, 12/13 from 4:30-6:30pm
= CSE 390B Final Location: CSE2 G04 (same as usual classroom)

W UNIVERSITY of WASHINGTON Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Reflection on Metacognitive Skills

Individually first, take some time to reflect on the following
guestions, and then discuss in groups:

<+ Which two metacognitive topics would you consider

including in your E-Portfolio and why?
= Reflect on which ones you’ve grown the most in, have impacted
you the most, were most challenging to grow in, etc.

% What are some examples of yourself demonstrating those

two metacognitive skills?
= Please be specific here! Aim to share these skills as if you are
telling a story and showing concrete applications of these skills

W UNIVERSITY of WASHINGTON Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Reflection on a Technical Skill

Individually first, take some time to reflect on the following
guestions, and then discuss in groups:

<+ What technical topic from CSE 390B would you consider

including in your E-Portfolio and why?
= Reflect on technical skills that helped connect the dots, were most
interesting to you, most challenging for you to grasp, etc.

% What is the impact of having knowledge of that technical

skill? In other words, why is that technical skill useful?
= Please be specific here as well — think about how this technical
skill would be useful in an academic or personal setting

YA/ UNIVERSITY of WASHINGTON Lecture 17: Final Project Overview & Operating Systems

Lecture Outline

< Final Project Overview
= E-Portfolio Details and Topics Brainstorming

<+ The Software Stack
* Roadmap of Hardware and Software Components

<% Overview of Operating Systems
= Abstraction, Protection, Processes, Virtual Memory

< Project 8 Overview
= Micro Jack Details, Tips for Getting Started

CSE 390B, Autumn 2022

YA/ UNIVERSITY of WASHINGTON

Roadmap

HARDWARE

Lecture 17: Final Project Overview & Operating Systems

High-Level
Language
Intermediate
Language(s)

Assembly Operating
Language System

Machine Code

¥

Computer

Basic Logic Gates

NAND

CSE 390B, Autumn 2022

YA/ UNIVERSITY of WASHINGTON

Roadmap

HARDWARE

Lecture 17: Final Project Overview & Operating Systems

High-Level
Language
Intermediate
Language(s)

Assembly Operating
Language System

Machine Code

¥

Computer

Memory

‘ ALU

"%

PC

¥

Basic Logic Gates

NAND

CSE 390B, Autumn 2022

YA/ UNIVERSITY of WASHINGTON

Roadmap

HARDWARE

Lecture 17: Final Project Overview & Operating Systems

High-Level
Language
Intermediate
Language(s)

Assembly Operating
Language System

Machine Code

¥

Computer

Memory

‘ ALU

"%

PC

¥

Basic Logic Gates

NAND

CSE 390B, Autumn 2022

10

W UNIVERSITY of WASHINGTON Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Roadmap

‘ Focus for the rest of

Intermediate the course
Language(s)

Assembly Operating
Language System

Machine Code

HARDWARE o

‘ CPU ’
e
‘ ALU ’ PC ’

¥

Basic Logic Gates

‘ Memory

NAND

11

W UNIVERSITY of WASHINGTON Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

High-Level
‘ Focus for the rest of

Intermediate the course
Language(s)

Assembly Operating
Language System

Machine Code

HARDWARE o

‘ CPU ’
e
‘ ALU ’ PC ’

¥

Basic Logic Gates

‘ Memory

NAND

12

W UNIVERSITY of WASHINGTON Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

S Oftwa re High-Level Py:l?(‘),:
Overview La"g"age e

Intermediate Java Byte Code
Language(s) Jack VM Code

(VM Translator)

x86, x86-64 Windows

Assembly ARM Operating Unixr;‘l?i(r:z)s(
- System
Language RISC-V y Android

L34 Hack OS

Machine Code

YA/ UNIVERSITY of WASHINGTON Lecture 17: Final Project Overview & Operating Systems

Lecture Outline

< Final Project Overview
= E-Portfolio Details and Topics Brainstorming

< The Software Stack
= Roadmap of Hardware and Software Components

<+ Overview of Operating Systems
= Abstraction, Protection, Processes, Virtual Memory

< Project 8 Overview
= Micro Jack Details, Tips for Getting Started

CSE 390B, Autumn 2022

14

W UNIVERSITY of WASHINGTON Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

The Operating System

<% The operating system (OS) is just another piece of software
= A massive, complex piece of software
" |n the end, uses the same machine language your code does

% OS is more trusted than the rest of the software that runs
on your computer

<% User programs and applications invoke (ask) the OS to

perform operations they are not trusted or allowed to
= Means the OS needs to be secure

15

W UNIVERSITY of WASHINGTON Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Why an Operating System?

< Directly interacts with the hardware

% Benefit: Abstraction

= Provides high-level functionality for messy hardware devices
= OS must be ported to new hardware, but user-level programs can
then be portable

% Benefit: Protection

= OSis trusted to touch hardware; user-level programs are not
= Prevents user-level programs from causing errors in the hardware
= Maintains security between programs and user accounts

16

W UNIVERSITY of WASHINGTON Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Operating Systems: Abstraction

<% Many abstractions provided by real-world operating
systems

< File System
= File contents = just bits in the “giant array” that is the hard drive
(“permanent” storage, as opposed to temporary storage in RAM
that disappears when computer is turned off)
= OS keeps a record of which ones fall into which “files”

17

W UNIVERSITY of WASHINGTON Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Operating Systems: Abstraction

<% Many abstractions provided by real-world operating
systems

<+ Network Stack
= Communicating with network devices = communicating with
screen/keyboard memory map
= OS handles messy, time-sensitive protocols

% Processes
= Only one process can run at once on a CPU
= QOperating systems can manage resource sharing
= OS switches very quickly, illusion of running both “at once”

18

W UNIVERSITY of WASHINGTON Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Operating Systems: Protection

<% The CPU has different “privilege” levels when it is
executing (controlled by a register on the CPU)

<% OS code and memory can only be executed by an OS
privilege level

= Your applications run at a lower level and cannot access OS code
and memory

<% This prevents applications from crashing entire system

= For example, if your web browser crashes, usually it doesn’t crash
your entire computer

= Also helpful for security purposes

19

W UNIVERSITY of WASHINGTON Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Operating Systems: Protection

<% Example: Suppose we want only the OS to be allowed to

run instruction SET ON FIRE

= But if the OS is just a machine code program like any other...
what’s the security hole?

20

W UNIVERSITY of WASHINGTON Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Operating Systems: Protection

<% Example: Suppose we want only the OS to be allowed to

run instruction SET ON FIRE

= But if the OS is just a machine code program like any other...
what’s the security hole?

Your Code Operating System Code

(USERPROGL1)

SET_ON_FIRE
QUSERPROG1

D;JEQ

@OSRﬁzgﬁﬂl,———,,————"(OSRETURNl)
0;JM

21

W UNIVERSITY of WASHINGTON Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Operating Systems: Protection

<% The fix: hardware bit for “privileged mode”
= Processor checks before running SET_ON_FIRE

= OS disables before jumping to user code, re-enables on return
* (Processor also must check that user code can’t enable privilege)

Your Code Operating System Code

SET ON FIRE
(USERPROGL1) - =

HW Privilege Bit

DISABLE PRIVILEGE

SET ON FIRE
1 —— QUSERPROG1
D;JEQ
(OSRETURN1)
QOSRETURN1

ENABLE PRIVILEGE
0 ; JMP. -

22

W UNIVERSITY of WASHINGTON Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Operating System: Processes

% A “process” is an application running on your computer
= E.g., your web browser, terminal, Microsoft Word, etc.

< Each app instance contained in one or more processes
= The OS manages these processes

<% Multiple processes are “running” at the same time, but
it’s just the OS quickly switching between them

<% A process only has access to its memory, and cannot

access the memory of other processes
= This is helpful because if one process crashes or is malicious, it

makes it more difficult to crash or corrupt other processes too
23

W UNIVERSITY of WASHINGTON Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Why Not an Operating System?

<% The Hack computer we’ve built is... small
= Uses the same principles as your laptop CPU

= But in terms of scale, closer to a microprocessor or small
embedded chip

<% For embedded systems, often an OS is overkill—instead,
designed to be programmed with/run a single program at

a time

= Pro: developer gets complete control over the device
= Con: re-implement OS features, no protection

24

CSE 390B, Autumn 2022

YA/ UNIVERSITY of WASHINGTON Lecture 17: Final Project Overview & Operating Systems

Virtual Memory

<% Most OS’s allow multiple
processes, but shouldn’t be
able to modify values in
another’s address space

<% OS provides illusion of
separate address spaces via

virtual memory

= Really all one physical memory

= OS & hardware map pieces of
virtual memory to pieces of
physical memory

virtual registers,
variables

Sa

25

YA/ UNIVERSITY of WASHINGTON Lecture 17: Final Project Overview & Operating Systems

<+ Benefit of security:

<+ Drawback is efficiency

virtual registers,
variables

Virtual Memory

Programs only know about

their own address space
= Don’t even have a way to
describe address of other
application’s data

= Virtual address translation is
fast nowadays, but still slower
than directly accessing memory

CSE 390B, Autumn 2022

Sa

W UNIVERSITY of WASHINGTON Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Comparison of Operating Systems

<% Three different ways to do essentially the same thing
= Everyone has their own preference

% Each has their own benefits and tradeoffs

= Work on varying types of hardware, provide different levels of
customization, different features, work better with different
software, open source vs. proprietary, etc.

<% You could choose to do some research next time you are
deciding on a laptop, computer, or OS

27

YA/ UNIVERSITY of WASHINGTON Lecture 17: Final Project Overview & Operating Systems

CSE 390B, Autumn 2022

Lecture Outline

< Final Project Overview
= E-Portfolio Details and Topics Brainstorming

< The Software Stack
= Roadmap of Hardware and Software Components

<% Overview of Operating Systems
= Abstraction, Protection, Processes, Virtual Memory

< Project 8 Overview
= Micro Jack Details, Tips for Getting Started

28

W UNIVERSITY of WASHINGTON Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Project 8 Overview

<+ You will be given starter code for a compiler that reads a
micro version of Jack and spits out Hack

< The Scanner & Parser are working
= Task A: read through comments to understand what’s going on

<% The Code Generation is buggy and half-finished
= Task B: find the bugs by practicing deliberate debugging strategies
(e.g., step through generated Hack code using CPUEmulator)
= Task C: Complete the implementation of the compiler

29

W UNIVERSITY of WASHINGTON Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Project 8: Micro Jack

< Stripped-down version of Jack
language
= More manageable but enough
features to be interesting

< Available features:
= Types:intand int[], var
= Structures: if,while, +, -, ==, 1=
<% Missing features:
= Functions, function calls, classes,
objects, strings, for loops, array
bounds checking, etc.

Any number of
variable declarations

Basic. jack

var int a, b[l], c;
var int 4d[10], e;

let a =1;
let b[0] = 1;
let n = 9;

while (n '= 0) {
let d[n] = a;
let n=n-1;
}
let screen[100] = d[0];

Then any number
of statements

30

W UNIVERSITY of WASHINGTON Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Project 8: The AST Nodes

<+ You are provided with all AST Node classes needed
= All your code will be implemented within these classes

ASTNode
JackProgram VarDeclaration Statement Expression Identifier
| | I
ArrayVarDeclaration Assignment Plus
1 1 1 \
IntVarDeclaration While Minus VarAccess
1 1 |
If Equals ArrayVarAccess
| |
NotEquals IntVarAccess
1
NumberLiteral

Abstract Class
31

YA/ UNIVERSITY of WASHINGTON

Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Project 8: Generating Code

< Each AST node has a printASM

method that should print out

Hack instructions to System.out

(and recursively call printASM
on children)

You're provided with

instr (“@RO”) and

label ("LOOP”) convenience
functions

Each can take a comment as a
second argument — highly
recommended!

public class If extends Statement {
public Expression condition;
public List<Statement> statements;

public void printASM(symbolTable) {
condition.printASM(symbolTable) ;
instr ("QRO”, "“Get cond result");
instr ("D=M") ;

32

W UNIVERSITY of WASHINGTON Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Project 8 Overview

<% Step 1: Read comments provided in the starter code

< Step 2: Implement NumberLiteral. java (™4 lines)

< Step 3: Debug Plus. java (2 bugs)

< Step 4: Implement Minus. java (~13 lines, similar to
Plus. java)

< Step 5: Implement NotEquals. java (~21 lines, similar
to Equals. java)

< Step 6: Implement ArrayVarAccess. java (~3 lines)
< Step 7: Debug I£. java (2 bugs)
< Step 8: ImplementWhile. java (~14 lines)

33

CSE 390B, Autumn 2022

YA/ UNIVERSITY of WASHINGTON Lecture 17: Final Project Overview & Operating Systems

Example: Number Literal (step1)

% Called a “literal” because it’s a literal value embedded in

the Micro Jack code
= Generated Hack Assembly should simply put that value in RO

@4

RO

MicrolJack Code M=
Abstract Syntax Tree
Hack ASM

34

W UNIVERSITY of WASHINGTON Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Example: Number Literal (step1)

public class NumberLiteral extends Expression ({
public int wvalue; 4

public NumberLiteral (String wvalue) ({
this.value = Integer.parselnt(value) ;

}

public void printASM() ({

comment ("'Start Number Literal"); sssp // Start Number Literal
instr(| ? |); =) Q4

instr ("D=A") ; =) D=A

instr("@RO") ; mmm)p (RO

instr("M=D") ; mmm) M=D

comment ("End Number Literal") ; memm) // End Number Literal

public String toString() ({
return Integer.toString(value)

}

35

W UNIVERSITY of WASHINGTON Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Example: Number Literal (step1)

public class NumberLiteral extends Expression ({
public int wvalue; 4

public NumberLiteral (String wvalue) ({
this.value = Integer.parselnt(value) ;

}

public void printASM() ({

comment ("'Start Number Literal"); sssp // Start Number Literal
instr("Q" + toString());) (@4

instr ("D=A") ; =) D=A

instr("@RO") ; mmm)p (RO

instr("M=D") ; mmm) M=D

comment ("End Number Literal") ; memm) // End Number Literal

public String toString() ({
return Integer.toString(value)

}

36

YA/ UNIVERSITY of WASHINGTON

Lecture 17: Final Project Overview & Operating Systems

CSE 390B, Autumn 2022

Example: Number Literal (step 1)

Compile Time

Run Time

_h—

// Start Number Literal

@4

D=A
QRO
M=D

——

// End Number Literal

e Java (the compiler) is running

® 4 s stored as value field inside an
NumberLiteral ASTNode

e When executed, prints code that
stores it another way!

public class NumberLiteral extends Expression {
public int value;

public NumberLiteral(String value) {
this.value = Integer.parselnt(value);

}

public void printASM() {
comment ("Start Number Literal");
instr("@" + toString());
instr("D=A");

Number Literal");
}

public String toString() {
return Integer.toString(value);
}
1

Hack ASM (the output) is running

4 is stored as constant inside an
assembly instruction

When executed, loads 4 from
instruction into A register

37

W UNIVERSITY of WASHINGTON Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Example: Plus step2)

public class Plus extends Expression ({
public Expression left;
public Expression right;

public void printASM() {
comment ("Start Plus");
left.printASM() ;

instr("@QRO") ;
instr ("D=M") ;

right.printASM() ;
push () ;

instr("@R1") ;
instr ("A=M") ;

instr ("D=D+A", "perform the addition")

38

W UNIVERSITY of WASHINGTON Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Exa m p I e : PI u S (StEP 2) % 1 Structural Bug: Map to abstract diagram

for Plus:
public class Plus extends Expression ({
public Expression left;
public Expression right;

)
= 2. RO
public void printASM() { =
comment ("Start Plus"); push RO o
=
—_ (7]
left.printASM() ; e
= 3-RO
2

instr("GRO") ;
instr ("D=M") ; pop, add RO

result - RO
right.printASM() ;

push() ;

% 1 Detail Bug: Step through generated code,

instr ("Q@R1") ; Check state at each step

instr ("A=M") ;

instr ("D=D+A", "perform the addition")

39

W UNIVERSITY of WASHINGTON Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Micro Jack Technical Details

< Can’t write a negative integer literal
= |nstead, use subtraction from zero: 0 - 1

< All variable declarations must come before all regular

statements
= Why? Simplifies concept of a “defined” variable

<+ No defined operator precedence
= |f order matters for an operation, use parentheses

40

W UNIVERSITY of WASHINGTON Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Micro Jack Technical Details

< Arrays are just as you would expect
= arr[index] just calculating an address: take address of arr
variable and add index to it as an offset
= No array bounds checking — you can run off the end of an array

<% Booleans are just O (false) and non-zero (true)

41

W UNIVERSITY of WASHINGTON Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Project 8: Debugging Tips

< Try walking through the general printASM code to

understand why each line is there
= Add comments to the assembly as you go! Much easier to
understand resulting file

< Find the smallest example you can
= Provided tests get progressively more complex, but you may want
to write your own tiny test case to isolate
= printASM methods can get long fast—we’ve added comments
so you can isolate to the section you’re working on
<+ “Play Computer”: as you step through the code, write
down the state you expect after each instruction, then

advance and see if the CPUEmulator agrees

42

W UNIVERSITY of WASHINGTON Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Additional Project 8 Tips

% When debugging assembly, a good first step is to try
understanding the code and adding comments to the

assembly as you go
= Much easier to understand resulting file

<+ AprintDebug method has been implemented for you
on all AST nodes

= Use it to visualize exactly what the parser is giving you, but also as
a basis for printASM

= Both need to do processing on the current node and strategically
recurse on its children

43

W UNIVERSITY of WASHINGTON Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Additional Project 8 Tips

< Pushing and popping from the stack can be intimidating,

but formulaic

= Understand it once, copy and paste afterward
= push () and pop () are already implemented for you

<+ We provide only a few Micro Jack test files
= We encourage you to write more of your own (think back to the
debugging lecture)
= Can use Sandbox. * to write more tests or create your own files

44

W UNIVERSITY of WASHINGTON Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Project 8 Tools Practice

< Practice using the Project 8 tools — try the following:

= Rungit pull to pull the Project 8 starter code

= Navigate to the src directory: cd src

= Compile the Java source code of the compiler by running:
javac $(find . -name "*.java")

= Use your compiler to compile the Jack file for the
OnlyVars. jack program: java compiler/Compiler
compile ../test/OnlyVars.jack

= Load and runOnlyVars. tst in the CPUEmulator

<% The above steps were taken from the “How to Run Tests”

portion of the specification
= Can refer to this when needed as you work through the project

45

W UNIVERSITY of WASHINGTON Lecture 17: Final Project Overview & Operating Systems CSE 390B, Autumn 2022

Post-Lecture 17 Reminders

< This Thursday’s Lecture: Final Project E-Portfolio
Workshop & Computer Networks

<% Project Reminders
= Project 7, Part Il (Professor Meeting Report) due this Thursday
(12/1) at 11:59pm
= Project 8 (Debugging & Implementing a Compiler) due next
Tuesday (12/6) at 11:59pm
= Final Project, Part | (E-Portfolio Outline) due next Thursday (12/8)
at 11:59pm

<% Check Canvas for late updated late days through Project 6

46

